MSL complex is attracted to genes marked by H3K36 trimethylation using a sequence-independent mechanism.

نویسندگان

  • Erica Larschan
  • Artyom A Alekseyenko
  • Andrey A Gortchakov
  • Shouyong Peng
  • Bing Li
  • Pok Yang
  • Jerry L Workman
  • Peter J Park
  • Mitzi I Kuroda
چکیده

In Drosophila, X chromosome dosage compensation requires the male-specific lethal (MSL) complex, which associates with actively transcribed genes on the single male X chromosome to upregulate transcription approximately 2-fold. We found that on the male X chromosome, or when MSL complex is ectopically localized to an autosome, histone H3K36 trimethylation (H3K36me3) is a strong predictor of MSL binding. We isolated mutants lacking Set2, the H3K36me3 methyltransferase, and found that Set2 is an essential gene in both sexes of Drosophila. In set2 mutant males, MSL complex maintains X specificity but exhibits reduced binding to target genes. Furthermore, recombinant MSL3 protein preferentially binds nucleosomes marked by H3K36me3 in vitro. Our results support a model in which MSL complex uses high-affinity sites to initially recognize the X chromosome and then associates with many of its targets through sequence-independent features of transcribed genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation

Understanding the function of histone modifications across inducible genes in mammalian cells requires quantitative, comparative analysis of their fate during gene activation and identification of enzymes responsible. We produced high-resolution comparative maps of the distribution and dynamics of H3K4me3, H3K36me3, H3K79me2 and H3K9ac across c-fos and c-jun upon gene induction in murine fibrob...

متن کامل

A Sequence Motif within Chromatin Entry Sites Directs MSL Establishment on the Drosophila X Chromosome

The Drosophila MSL complex associates with active genes specifically on the male X chromosome to acetylate histone H4 at lysine 16 and increase expression approximately 2-fold. To date, no DNA sequence has been discovered to explain the specificity of MSL binding. We hypothesized that sequence-specific targeting occurs at "chromatin entry sites," but the majority of sites are sequence independe...

متن کامل

Distribution and Maintenance of Histone H3 Lysine 36 Trimethylation in Transcribed Locus

Post-translational modifications of core histones play an important role in the epigenetic regulation of chromatin dynamics and gene expression. In Saccharomyces cerevisiae methylation marks at K4, K36, and K79 of histone H3 are associated with gene transcription. Although Set2-mediated H3K36 methylation is enriched throughout the coding region of active genes and prevents aberrant transcriptio...

متن کامل

Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana.

Histone lysines can be mono-, di-, or trimethylated, providing an ample magnitude of epigenetic information for transcription regulation. In fungi, SET2 is the sole methyltransferase responsible for mono-, di-, and trimethylation of H3K36. Here we show that in Arabidopsis thaliana, the degree of H3K36 methylation is regulated by distinct methyltransferases. The SET2 homologs SDG8 and SDG26 each...

متن کامل

Non-coding roX RNAs Prevent the Binding of the MSL-complex to Heterochromatic Regions

Long non-coding RNAs contribute to dosage compensation in both mammals and Drosophila by inducing changes in the chromatin structure of the X-chromosome. In Drosophila melanogaster, roX1 and roX2 are long non-coding RNAs that together with proteins form the male-specific lethal (MSL) complex, which coats the entire male X-chromosome and mediates dosage compensation by increasing its transcripti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cell

دوره 28 1  شماره 

صفحات  -

تاریخ انتشار 2007